High pressure hugoniot measurements using mach waves

نویسندگان

  • Justin Brown
  • Guruswami Ravichandran
  • J. L. Brown
  • G. Ravichandran
چکیده

Traditionally, most dynamic shock compression experiments are conducted using a plane one-dimensional wave of uniaxial strain. In this case, the evaluation of the equation of state is simplified due to the geometry, but the amplitude of the induced shock wave is limited by the magnitude of the input load. In an effort to dramatically increase the range of pressures that can be accessed by traditional loading methods, a composite target assembly is examined. The target consists of two concentric cylinders aligned with the axial direction parallel to the loading. The target is designed such that on initial loading, the outer cylinder will have a higher shock velocity than the inner material of interest. Conically converging shocks will be generated at the interface between the two materials due to the impedance mismatch. Upon convergence, an irregular reflection occurs and the conical analog of a Mach reflection develops. The Mach reflection will grow until it reaches a steady state, at which point the wave configuration becomes self similar. The resulting high pressure Hugoniot state can then be measured using velocity interferometry and impedance matching. The technique is demonstrated using a planar mechanical impact generated by a powder gun to study the shock response of copper. Two systems are examined which utilize either a low impedance (6061-T6 aluminum) or a high impedance (molybdenum) outer cylinder. A multipoint VISAR experiment will be presented to validate the technique, and will be compared to numerical simulations. The feasibility of measuring an entire Hugoniot curve using full field velocity interferometry (ORVIS) will also be discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High pressure Hugoniot measurements using converging shocks

Plate impact experiments are a powerful tool in equation of state development, but are inherently limited by the range of impact velocities accessible to the facility. In an effort to dramatically increase the range of pressures which can be studied with available impact velocities, a new experimental technique is examined. The target plate is replaced by a composite assembly consisting of two ...

متن کامل

High Pressure Hugoniot Measurements in Solids Using Mach Reflections

Shock compression experiments provide access to extreme pressures in a laboratory setting. Matter at these pressures is often studied by utilizing a well controlled planar impact between two flat plates to generate a one dimensional shock wave. While these experiments are a powerful tool in equation of state (EOS) development, they are inherently limited by the velocity of the impacting plate. ...

متن کامل

Study of Parameters Affecting Separation Bubble Size in High Speed Flows using k-ω Turbulence Model

Shock waves generated at different parts of vehicle interact with the boundary layer over the surface at high Mach flows. The adverse pressure gradient across strong shock wave causes the flow to separate and peak loads are generated at separation and reattachment points. The size of separation bubble in the shock boundary layer interaction flows depends on various parameters. Reynolds-averaged...

متن کامل

Comparison of different turbulence models in a high pressure fuel jet

In this study, modeling of a fuel jet which has been injected by high pressure into a low-pressure tank are investigated. Due to the initial conditions and the geometry of this case and similar cases (like CNG injectors in internal combustion engines (ICE)), the barrel shocks and Mach disk are observed. Hence a turbulence and transient flow will be expected with lots of shocks and waves. Accord...

متن کامل

Equation of state measurements in liquid deuterium to 70 GPa.

Using intense magnetic pressure, a method was developed to launch flyer plates to velocities in excess of 20 km/s. This technique was used to perform plate-impact, shock wave experiments on cryogenic liquid deuterium ( L-D(2)) to examine its high-pressure equation of state. Using an impedance matching method, Hugoniot measurements were obtained in the pressure range of 30-70 GPa. The results of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012